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The motion generated by a rising particle in a
rotating fluid − numerical solutions.

Part 1. A short container

By E. M I N K O V, M. U N G A R I S H† AND M. I S R A E L I
Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel

(Received 8 February 1999 and in revised form 21 January 2000)

Numerical finite-difference results of the full axisymmetric incompressible Navier–
Stokes equations are presented for the problem of the slow axial motion of a disk
particle in an incompressible, rotating fluid in a cylindrical container. The governing
parameters are the Ekman number, E, the Rossby number, Ro, and the dimensionless
height of the container, H (with respect to the diameter of the particle). The study
concerns small values of E, Ro, and HE−1/2 and compares the numerical results with
predictions of previous analytical (mostly approximate) studies. Special attention is
focused on the drag force. First, developed (quasi-steady state) cases are considered.
Excellent agreement with the exact linear (Ro = 0) solution of Ungarish & Vedensky
(1995) is obtained when the computational Ro = 10−4. The effects of the nonlinear
momentum advection terms are analysed and shown to be proportional to RoE−1/2.
Next, the time-development for both (a) impulsive start and (b) start under a constant
axial force are considered, and good qualitative agreement with previous analytical
results (including the appearance of oscillations in case (b)) is indicated.

1. Introduction
We consider the slow axial motion of a symmetrical particle, whose circumscribing

cylinder is of radius a∗ in an incompressible, rotating fluid in a cylindrical container
of length 2H∗ and radius r∗max which rotates with high angular velocity Ω∗ around the
axis of symmetry, z, as sketched in figure 1. The particle axial velocity relative to the
container is denoted by w∗p and its (quasi) steady-state value W ∗ will be used as the
reference velocity. Typically, the considered particle is in the middle of the container.
We are interested in the velocity field and drag force, D∗. The asterisk denotes a
dimensional variable.

This problem is fundamental to the theory of rotating fluids and incorporates many
variants of the essential ingredients of the topic: Ekman and Stewartson layers, the
Taylor column, the linear theory, inertial modifications, and more (see Greenspan
1968). From the academic aspect, this problem deserves attention because there
still are gaps in knowledge and some intriguing discrepancies between theory and
experiments. Applications of the results are expected in investigations of the rheology
of rotating suspensions, centrifugal separation processes and the motion of cores of
planets. However, numerical simulations of this problem are conspicuously lacking.

† Author to whom correspondence should be addressed.
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Figure 1. Sketch of the configuration. The particle is solid and torque-free (in the present investiga-
tion, a thin disk). The boundaries of the cylindrical container co-rotate with the coordinate system;
the lateral boundary which is at r = rmax is not shown here. In the ‘long’ container the Stewartson
layers tend to merge into a free Taylor column. a∗, W ∗ and a∗/W ∗ are the scales for length, velocity
and time t. (In addition to t, the dimensionless time T which is scaled with Ω∗−1 is also used.) The
z- and r-directions are called ‘vertical’ and ‘horizontal’.

The equations governing the motion of an incompressible viscous fluid, in a
system rotating with constant angular velocity Ω∗, are the conservation of mass
and momentum:

∇ · v∗ = 0, (1.1)

∂v∗

∂t∗
+ v∗ · ∇v∗ + 2Ω∗ × v∗ = −∇p

∗

ρ∗
− ν∗∇× ∇× v∗. (1.2)

Here, v∗ is the velocity in the rotating coordinate system, p∗ is the reduced pressure,
t∗ is time, ρ∗ and ν∗ are the density and kinematic viscosity of the fluid. We attach
the origin of the coordinate system to the centre of the particle, and denote by
z the axial coordinate, pointing in the direction of Ω∗. We note that if the origin of
the coordinate system (the particle) is accelerated by A∗(t) in the z-direction and/or
the gravity acceleration g∗ acts in the −z-direction, then the reduced pressure p∗
also contains the term ρ∗[g∗ + A∗(t)]z∗ in addition to the centrifugal term, but the
equations remain unchanged. We emphasize that the coordinate system is attached to
the particle only concerning the axial motion, but it rotates with the constant Ω∗ of
the container boundaries, which may be different from that of the particle.

The main dimensionless parameters highlighting the flow field generated by the
motion of the particle are

E =
ν∗

Ω∗a∗2
, Ro =

W ∗

Ω∗a∗
and H =

H∗

a∗
. (1.3)
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The Ekman number, E, expresses the typical ratio of the viscous to the Coriolis force
in the fluid. It is also common to use the Taylor number, T = 1/E, in this context.
We are interested in flows with small E (large T ). The Rossby number, Ro, expresses
the ratio of the inertial and advective to the Coriolis accelerations in the fluid, and
provides an estimate of the relative importance of the nonlinear terms in the equations
of motion. The aspect ratio, or dimensionless height, H , is a geometric parameter, but,
as detailed below, its magnitude relative to E−1/2 has a major influence in determining
the characteristics of the flow field. In this paper we consider the case of H � E−1/2

(to be more specific, 0.016HE1/26 0.13).
To non-dimensionalize the equations (1.1)–(1.2) and the drag force the following

scaling is utilized:

{r∗, t∗, v∗, p∗, D∗} =

{
a∗r,

a∗

W ∗ t,W
∗v,

W ∗ν∗ρ∗

a∗
p,W ∗ν∗ρ∗a∗D

}
. (1.4)

Now the governing equations read

∇ · v = 0, (1.5)

Ro
∂v

∂t
+ Ro v · ∇v + 2ẑ × v = −E∇p− E∇× ∇× v, (1.6)

where ẑ is the unit vector in the direction of the axis of rotation. Setting Ro = 0 in
equation (1.6) yields the important linear formulation, which was adopted in most of
the previous pertinent theoretical investigations.

The boundary conditions are no-penetration and no-slip on the particle, whose ge-
ometry is specified, and on the container boundaries (in some analytical investigations
the boundaries of the container are assumed to be ‘at infinity’). The angular motion
of the particle itself is defined by the condition that no external torque is applied on
the particle. The vertical motion of the particle is defined as follows. In the case when
the (quasi) steady-state motion is of interest the vertical velocity of the particle is set
to be constant. In the case when the time-dependent transient flow field is of interest,
two situations are considered: (a) impulsive set up of the velocity to a constant value,
which significantly simplifies the investigation, or (b) calculation of the accelerated
motion of the particle from rest under the action of a constant axial driving force,
which simulates the behaviour of a buoyant particle in a gravity field parallel to the
axis of rotation.

It is both mathematically and physically convenient to distinguish between two
major cases: the ‘short’ and ‘long’ container types of flow field. The former is expected
when H � E−1/2, in which case the flow field is dominated by the Ekman layers
and the dimensionless drag force on the particle is O(E−3/2). In the latter, expected
when H > 0.05E−1, the fascinating free Taylor column structure appears and the
drag force is O(E−1). The numerical method of solution described below turns out
to be applicable to both configurations subject to some minor adaptations. However,
for focusing the discussion, we have separated the investigation of these cases. The
present paper is concerned with the short container, and a sequel paper (Minkov,
Ungarish & Israeli 2000) will describe the results for the long container.

1.1. Previous investigations

Here we present a brief summary of previous studies on the short container config-
uration. More details will be given in the next sections during the discussion of our
new results.
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The analytical results (with an exception that will be specified) were based on the
linear theory (i.e. Ro = 0 multiplies all advection terms in the momentum equations).
This simplification still leaves a formidable system and additional approximations
and restrictions were necessary for progress.

The approximate solutions are for the asymptotic E → 0 limit. Stewartson (1966)
and Moore & Saffman (1968, 1969) considered the steady-state flow over a solid
particle, and showed that the flow field consists of z-independent geostrophic ‘cores’,
Ekman boundary layers on the particle and horizontal boundaries and Stewartson
shear layer on the cylinder circumscribing the solid particle. The details, in particular
of the inner Stewartson E1/3 layer, are still too complicated for detailed calculations
in cases of interest. A simple and robust further approximation is the ‘geostrophic’
model that neglects the influence of the Stewartson layers (actually it implies that
the thickness of the vertical shear layers is zero and no radial motion of the fluid
takes place outside the Ekman layers). The geostrophic model provides a simple
analytical formula for the drag force, which is a variable of major concern in practical
applications and in experimental measurements. Moore & Saffman’s (1968) result for
the geostrophic drag for a rigid sphere is

D∗0 = 43
105
πE−3/2(W ∗ν∗ρ∗a∗),

and hence, in dimensionless form,

D0 = 43
105
πE−3/2 (1.7)

(the subscript 0 is used to denote the geostrophic drag; for a disk the coefficient 43
105

should be replaced by 1
2
). We emphasize that the geostrophic drag is independent of

H and also of the position of the particle between the horizontal boundaries.
Maxworthy (1968) performed experiments in order to verify the results of Moore

& Saffman (1968). He used a container 40 cm long, 28 cm in diameter filled with
water, in which buoyant spheres, of diameters 1.9 and 3.9 cm, were released along
the axis. The drag force was calculated from the measured time of motion between
two marks 25 cm apart, and observations of the flow were carried out by colouring
selected regions. Even for the smallest value of Ro the drag was about 20% below the
theoretical D0 and significant differences from the geostrophic flow field (in particular
a radial flow outside the Ekman layers) were observed. Maxworthy, using an order-
of-magnitude argument of Moore & Saffman, attributed these discrepancies to the
effect of the nonlinear advection terms, and inferred that only for Ro < 10−3E2/3

can a good agreement (of about 2.5%) between theory and experiment be realized.
In other words, this suggested that the errors of the linear theory are of magnitude
10RoE−2/3. The limitation of the linear theory to such extremely small values of Ro,
about 100 times smaller than achieved in the experiment, cast serious doubts on the
applicability of the linear theory to this type of problem.

Bush, Stone & Bloxham (1992, 1995) extended the geostrophic results to the case of
buoyant bubbles or drops in circumstances which allow for decoupling between shape
and motion, and derived the corresponding geostrophic drag force formula which is
similar to (1.7) but with the leading coefficient increasing from 43

105
to 1 as the no-slip

parameter (the transport efficiency of the Ekman layer on the drop interface relative
to a similar solid surface) decreases from 1 to 0. Bush et al. (1995) also performed
relevant experiments which, again, show that the actual drag force is significantly
smaller than the geostrophic prediction.



The motion generated by a rising particle in rotating fluid. Part 1 115

Ungarish & Vedensky (1995) derived, by Hankel transform methods, an ‘exact’
solution of the linear equations which is, however, limited to a very special configura-
tion: the (quasi) steady motion of the disk in the midplane of a container of infinite
rmax. They showed that the exact linear drag force is dependent on the value of H
(unlike the geostrophic drag) and, for the values of E and H used in Maxworthy’s
experiment, the exact linear drag force is considerably smaller than the prediction
of the geostrophic approximation. They suggested that the discrepancies reported by
Maxworthy should be mainly attributed to the lack of Stewartson layers effects in
the geostrophic result, not to the lack of advection terms. Quantitative comparisons
could not be performed because of the different geometries.

Ungarish (1996) developed the ‘quasi-geostrophic’ model which assumes that the
E1/3 Stewartson layer is negligibly thin, but incorporates, in addition to the Ekman
layers (as in the geostrophic model), also the viscous effects in the (extended) E1/4-
type Stewartson layers. This allows for a radial flow outside the Ekman layers,
consistent with experimental observations. The flow field and drag force can still be
obtained by relatively simple calculations. The resulting quasi-geostrophic drag force
is dependent also on H and, for a solid spherical particle in the proper parameter
range, is smaller than the experimental values of Maxworthy by about 20%–30%.
The discrepancies were attributed to the lack of E1/3 layers effect. The discrepancy
with the experimental results of Bush et al. (1995) for drops is even larger, but the
E1/3 layers in the parameter range of these experiments are really thick.

Ungarish (1996) also used the quasi-geostrophic model for deriving a quantitative
estimate of the contribution of the nonlinear terms to the flow field when Ro is small
but not zero. The analysis indicated that the ‘effective’ Rossby number is RoE−1/2,
and that the drag force decreases (but only slightly) due to the inertial effects when
this parameter is small. This strengthened the inference that the reported discrepancy
between the geostrophic theory and experiments does not necessarily mean that the
linear theory is wrong, but rather that the geostrophic approximation is not accurate.

The time-dependent flow field generated by a particle in a rotating fluid in the
short container configuration has received little attention. It was considered briefly
by Smith (1987), and in more detail by Ungarish (1997). The last work considers,
in the framework of the geostrophic and quasi-geostrophic models, the behaviour of
the flow field and drag force for both an impulsive start and a start under constant
external force. For the latter case some strong oscillations of the axial velocity were
predicted which are, however, inconsistent with some of the underlaying assumptions
of the models. No experimental or theoretical support for these results was available.

1.2. Objectives

The evident parametric limitations of the abovementioned theoretical studies – and
in particular the apparently poor agreement with experiments, the complete lack
of experimental evidence for the time-dependent motion, and the lack of numerical
solutions – give rise to confusion and cast doubt on the reliability of the body
of knowledge concerning this problem. The most pressing issues are the effect of
the advective nonlinear terms when Ro is small but finite and the time-dependent
behaviour.

In the present study we intended to throw some light on these topics. To this end,
we attempted the numerical solutions of the full system of Navier–Stokes equations
(1.5)–(1.6) for a disk particle, by a finite difference method. The advantage over
the previous investigations is the incorporation of all known physical effects in the
analysis. We are therefore able to gain wider, more reliable and more accurate results
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and insights. To the best of our knowledge, no such numerical results have been
published before (Dennis et al. 1982 attempted a related numerical solutions for a
sphere in an unbounded domain but, due to convergence difficulties, presented results
only for large values of the Ekman number). The main restrictions on our study stem
from the following. (a) The a priori enforcement of axisymmetry. This assumption,
however, is expected to be relevant to many real flows. (b) The special geometry of the
particle. There are many theoretical indications that the essential flow-field features
for spherical, ellipsoidal and disk particles are very similar, and that this similarity
increases with H , but of course future computations for these shapes are necessary.

The first objective was to assess the validity of previous ‘exact’ (quasi) steady-state
linear solutions (obtained by Ungarish & Vedensky 1995) via a comparison with the
present numerical results (for very small Ro). The comparison covered both the flow
field and the drag force. The second objective was to investigate the influence of
the inertial terms on the flow field and the drag force. This enabled us to estimate
the range of applicability of the linear theory results, i.e. the link between the value
of the parameter Ro and the deviation from the prediction of the linear theory (in
particular, for the drag force).

The next objective was the investigation of the time-dependent behaviour of the
flow field for which very little information was available. This has been performed
for two types of forcing: (a) impulsive start from rest (in the rotating system) and (b)
start from rest (in the rotating system) under a constant force.

The corresponding numerical results and the comparison with previous theoretical
knowledge are presented and discussed below. The paper is organized as follows. The
numerical finite-difference approach is introduced in § 2. The numerical results for
developed flow fields (i.e. in quasi-steady state) are presented and discussed in § 3, first
for the linear case (Ro = 10−4 in the numerical solution), then for nonlinear cases (up
to RoE−1/2 = 0.8). The time-dependent motion is considered in § 4. We present some
concluding remarks in § 5.

2. The numerical scheme
2.1. Formulations

We solve numerically the full system of Navier–Stokes equations in the rotating
system, (1.5)–(1.6), in the configuration depicted in figure 1 for a disk-shaped particle.
In view of the axial symmetry, the scalar form of the governing equations is

Ro

(
∂u

∂t
+ u

∂u

∂r
− v2

r
+ w

∂u

∂z

)
− 2v = −E∂p

∂r
+ E

(
∇2 − 1

r2

)
u, (2.8)

Ro

(
∂v

∂t
+ u

∂v

∂r
+
uv

r
+ w

∂v

∂z

)
+ 2u = E

(
∇2 − 1

r2

)
v, (2.9)

Ro

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −E∂p

∂z
+ E∇2w, (2.10)

1

r

∂(ur)

∂r
+
∂w

∂z
= 0, (2.11)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
.
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Here r and z are the radial and axial coordinates in a cylindrical frame attached
to the centre of the disk and rotating with the walls and {u, v, w} are the velocity
components.

The boundary conditions on the disk and the walls are specified as

u = w = 0; v = rωp at 0 6 r 6 1, z = 0; (2.12)

u = v = 0; w = −wp at z = Hu,−Hl; (2.13)

u = v = 0;
∂w

∂r
= 0 at r = 0; (2.14)

u = v = 0; w = −wp at r = rmax. (2.15)

Here Hu,Hl are the heights of upper and lower domains with respect to the particle,
rmax is the radius of the container, wp is the vertical velocity of the particle relative to
the boundary and ωp is the angular velocity of the particle. The value of ωp is not
prescribed, but a consequence of the condition that no external torque is applied on
the disk. This is expressed by the auxiliary equation:∫ 1

0

(
∂v

∂z

∣∣∣∣
z=0+

− ∂v

∂z

∣∣∣∣
z=0−

)
r2 dr = 0, (2.16)

which becomes a part of the system which we attempt to solve. For the value of wp
we considered two cases. (a) The impulsive start from rest with constant velocity, for
which we set simply wp = 1. This is the default condition in the present investigation,
and is used if not specified otherwise. (b) The release from rest under a constant axial
force (we have in mind a model for a buoyant particle in a gravity field acting in the
z-direction). In this case the determination of time-dependent wp, from the equation
of motion of the particle as described in § 4.2, is also a part of the problem.

The initial conditions at t = 0 are simply v = 0 and a prescribed position Hl(t = 0)
of the particle. (Some modifications will be introduced and discussed later.)

For presentation purposes we introduce the stream function

ψ(r, z) = −
∫ r

0

r′w(r′, z) dr′. (2.17)

The solution of the foregoing system is attempted with the finite-difference method,
using explicit approximation in time of the viscous, Coriolis and nonlinear terms, and
implicit approximation for the pressure, i.e. the flow field at the (n + 1)th time step
is calculated from the flow field at the nth time step by adding the contribution of
the linear and nonlinear momentum terms calculated explicitly at the nth time step
and the contribution of the pressure gradient that is calculated implicitly from the
condition of continuity, ∇ · vn+1 = 0. This requires the solution of a Poisson equation
for each time step. The details are as follows.

2.2. The grid structure

We use a rectangular grid in the meridional plane (z, r) that is attached to the disk
while the axis of the rotation (which is also the axis of symmetry) is located on
the grid line r = 0; the disk is located on the grid line z = 0, from r = 0 to
r = 1. The horizontal walls of the container (the upper and the lower planes) move
with respect to the horizontal grid lines, see figure 2. The outer boundary of the
grid is placed at r = rmax. We chose values of rmax large enough to have negligible
influence on the flow. We expected and confirmed by numerical tests that for the short
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Figure 2. Schematic description of the grid and of the computational cells around the disk edge.
The thick lines are horizontal boundaries. The grid is attached to the disk.

container configurations with E6 10−3 and H < 8, in which the thickness of the outer
Stewartson layer, E1/4H1/2, is less than 0.5, rmax = 2 is large enough for this purpose.
For the long container configurations, where no clear-cut vertical layers appear, we
have found by similar numerical tests that the appropriate value is rmax = 5; this will
be discussed in the sequel paper.

The discretization grid is non-uniform, in an attempt to improve the resolution in
the region around r = 1 and in the Ekman layers. For the radial coordinate we used
the standard method of mapping of the physical domain into the computational one,
by the function f : [0, rmax]→ [0, 1]

f(r) =
r + (2/π)

(
arctan

(
(r − 1)/E1/4

)
+ arctan

(
1/E1/4

))
rmax + (2/π)

(
arctan

(
(rmax − 1)/E1/4

)
+ arctan

(
1/E1/4

)) .
Equal intervals are taken in the computational domain. In this stretching the density
of the vertical (r = ri) grid lines changes smoothly; it is maximal in the Stewartson
layers at r = 1 and decreases towards the centre and the outer boundary; about
1/(1 + 0.5rmax) of the radial grid intervals are concentrated in a layer of thickness
2E1/4 around the cylinder r = 1.

On the other hand, for the definition of the grid in the axial direction we used a
more sophisticated and non-standard approach which takes into account the relative
motion between the particle and the boundaries. The zj grid lines form two sub-grids:
the ‘main’ grid and the ‘fine’ grid. The main grid is uniform in the z-direction; the
interval ∆zmain is larger than E1/2 but still able to provide a good resolution for the
flow field outside the Ekman layers. The fine grid is needed for the resolution of the
Ekman layers on the horizontal walls and on the disk. Several layers of the main
grid cells in these regions are refined by sub-division, so that the total thickness of
the refined region is larger than the Ekman layer and the resolution in the Ekman
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Figure 3. The drag force as a function of the number of time steps for E = 10−3, Ro = 10−2, H = 1.
The axial grid is adjusted to the changing geometry by ‘jumps’ each 40 time steps. ∆t = 10−2/60.
(This is an early stage of the solution and therefore a rapid variation of D still occurs.)

layers is satisfactory. The location of the refined regions near the horizontal walls with
respect to the main grid (attached to the particle) varies with time as follows. Initially
we refine a number of grid layers, say div, above and under the disk, div + 1 layers
under the top wall, div layers above and one layer under the bottom wall. The time
step ∆t is chosen small enough to satisfy the requirement that the particle advances
∆zfine in several time steps; during these time steps the position of the walls is frozen,
and the flow field is computed in this frozen geometry. After these several time steps
the top and bottom walls are displaced one fine grid layer down (the thickness of
the refined regions under the horizontal planes decreases). After several such small
displacements, when the walls reach a line of the main grid (i.e. as they have moved
a distance equal to ∆zmain), the number of refined layers under the top plane becomes
div, and the number of refined layers above the bottom plane becomes div + 1. Now
we update the grids by refining one additional layer of the main grid in the top region
and eliminating the refined layer of the main grid in the bottom region. A new cycle
begins in which the motion of the boundary is again as described above. (The grid
layers that accumulate above the top boundary are discarded.)

We emphasize that ∆zfine � 1 and hence the ‘jump’ of the container walls once
in several time steps is not expected to affect significantly the smoothness of the
computed flow-field variables. This was indeed observed in the results, and an example
is shown in figure 3, which depicts the behaviour of the drag force vs. the number
of time steps for the configuration E = 10−3, Ro = 10−2, H = 1 and rmax = 2, with
the disk initially placed in the middle of the container. The grid has 60 intervals in
the r-direction and 60 main-grid layers in the z-direction, ∆zmain = 1

30
. With div = 2,

the corresponding number of layers near the disk and the horizontal planes are each
sub-divided into five sub-layers, i.e. ∆zfine = 1

150
. The time step ∆t = 10−2/60 causes a

jump of the grid every 40 time steps, and a new refinement every 200 time steps. We
can see that the effect of the perturbation created by each jump is small and decays
very quickly, in about three time steps.

2.3. The spatial discretization

We use a staggered arrangement of the discretized dependent variables in the grid
cell, see figure 2: the vertical component of velocity w is defined at the centres of the



120 E. Minkov, M. Ungarish and M. Israeli

horizontal edges, the radial and azimuthal components u and v are defined at the
centres of vertical edges, and the pressure is defined at cell centres. The horizontal
walls and the disk are placed on the grid lines so that w is defined on them while
u and v are defined on the vertical boundaries r = 0 and r = rmax, but not on the
horizontal ones.

The most problematic region is around the disk edge (r = 1, z = 0) since the
analytical solution there has a singularity: the pressure is expected to behave like
s−1/2 and the meridional velocity components like s1/2, where s is the distance from
the edge in the (r, z)-plane. By setting one of the vertical grid lines at r = 1 (disk
radius) we avoid the computation of pressure and velocities at this singular point
(see figure 2). In other words, the disk edge is formally a grid point, but it is not a
point where a discretized physical value is sought. However, the disk also provides
the physical boundary conditions (2.12) for the computational cells which embed the
edge. Consequently, the computations of the discretized variables near the edge can
be performed as for any ordinary point near a boundary.

The justification of this formally regular treatment of the disk edge region is as
follows. The staggered grid arrangement used here provides essentially a finite volume
discretization. In this context, the use of the variables near the edge means that we
take into account the integrated action over a cell boundary of the pressure and
shear stress; we know that this action is finite, O(s1/2), for the computational cells
which embed the edge. Still, some accuracy is sacrificed due to the simplicity of
this treatment of the singularity, and some additional considerations and tests were
performed for further justification, as discussed later. We keep in mind that we are
not interested in the details of the flow field near the edge, but rather in circumventing
the difficulties posed by the singularity without loss of accuracy further away (say,
2–3 grid intervals) from the edge. The expectation for localized influence of a local
relatively large error is supported by the ellipticity of the equation for the pressure,
see below, by which the discretized flow field is actually computed.

For easy implementation of the boundary conditions on the vertical surfaces we use
‘dummy’ points for u and v, and we do the same with w on the vertical boundaries.

For the discretization of the system (2.8)–(2.11) we have to approximate the first
derivatives ∂/∂r and ∂/∂z of the functions u, v, w and p and second derivatives
∂2/∂r2 and ∂2/∂z2 of the functions u, v and w. Since the time derivative of any
velocity component is expressed by (2.8)–(2.10) through the spatial derivatives of
this component only, the first and second derivatives of velocity components have
to be discretized at the points of definition of these components. Such discretization
is performed by means of three points (the point at which the derivative has to be
approximated and its two neighbours) by the standard formulae

∂f

∂x
≈ fi+1(xi − xi−1)

2 − fi−1(xi+1 − xi)2 + fi
(
(xi+1 − xi)2 − (xi − xi−1)

2
)

(xi+1 − xi)(xi − xi−1)(xi+1 − xi−1)
(2.18)

and

∂2f

∂x2
≈ 2

fi+1(xi − xi−1) + fi−1(xi+1 − xi)− fi(xi+1 − xi−1)

(xi+1 − xi)(xi − xi−1)(xi+1 − xi−1)
, (2.19)

where f stands for u, v or w and x stands for z or r. In this discretization z-derivatives
are just central differences in the whole domain except the boundaries of the fine-grid
regions. First derivatives always have second-order accuracy. Second derivatives in z
have first-order accuracy at the boundaries of the fine-grid regions and second order
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in the rest of the domain (where they are central differences) and second derivatives
in r always have second-order accuracy since (ri+1 − ri)− (ri − ri−1) = O((ri − ri−1)

2).
The discretization of pressure derivatives is coupled with the discretization of

the continuity equation (2.11) and, as we shall show in § 2.4, (2.11) is not solved
independently, but it is used as a basis for the derivation of the pressure equation.
We discretize the derivatives for (2.11) in cell centres and use a standard central
difference approximation which is second-order accurate. The pressure derivatives are
also approximated by central differences and they are second-order accurate in the
whole domain except the z-derivatives at the boundaries of the fine-grid regions, since
there the difference is not applied in the segment centre.

For the discretization of the nonlinear terms we also have to interpolate u to
grid-points where w is defined and w to points where u and v are defined. All these
interpolations are performed by averaging of the four neighbouring values and this
interpolation is of second-order accuracy everywhere except the interpolation of u on
the boundaries of the fine-grid regions where w is defined.

A formal disadvantage of the discretization is the sharp change of the vertical grid
interval on the boundary of the refined region, which leads to a local loss of accuracy,
i.e. the approximations of ∂2/∂z2, ∂p/∂z and u there have first-order accuracy. We
could have avoided this problem if we had used a smooth grid, but it would complicate
the process of moving planes and refining. We can argue that the effect of this non-
smoothness is not significant, because it is performed well outside the Ekman layers,
in regions where the flow field is expected to have a very mild dependence on z. This
was indeed confirmed by comparing results obtained on several grids with different
vertical intervals. Some results are presented in tables 1 and 2 for a configuration
with E = 10−3, Ro = 10−2, H = 1 and the disk initially placed in the middle of the
container. The comparisons were performed after 40 steps with ∆T = 1

60
(T is time

scaled with Ω∗−1). The grid has 60 intervals in the radial direction, and the minimal
thickness of the refined region was 2

75
.

Tables 1 and 2 display the drag force and the radial velocity at r = 1, z = 0.1333
(at the boundary of the refined region), respectively, calculated with the non-uniform
axial grids (first column) and with uniform axial grids (second column). In the first
row we present results of calculations with ∆zfine = 1

75
and in the second row we

present results of calculations with ∆zfine = 1
150

. The third row shows the difference
between the first two rows, i.e. the influence of changing ∆zfine. The third column
shows the difference between the first two columns, i.e. the influence of a uniform
grid. It is evident that the influence of the value of ∆zfine on the resolution is much
more pronounced than the error associated with the use of a non-uniform grid. We
conclude that it is justified to insist on a good resolution in the Ekman layers, but
this does not necessitate a global smooth refinement of the grid.

The foregoing estimates of numerical accuracy do not hold in the close vicinity
of the edge (r = 1, z = 0). The attempt to represent the s1/2-like behaviour of the
velocities there by a polynomial, as implied by the finite-difference method, leads to
persistent errors in the viscous stress on the boundary of the numerical cells around
the edge. However, although these errors may be large (say, 30%), they are local and
their influence is proportional to the size of the grid intervals near the edge. We recall
that these grid intervals are designed to be very small, and in particular smaller than
the viscous length scale E1/2. Heuristically, the effect of these errors can be regarded
as similar to the effects of a change in the local viscosity of the fluid (in a region
near the edge of the size of the computational cell) by, say, 30%. Such an effect is
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∆zfine ∆zmain = 1
15

∆zmain = ∆zfine δ (%)

1
75

4119.0 4117.6 0.034
1

150
4146.3 4144.8 0.036

δ (%) 0.66 0.66

Table 1. Drag force in non-uniform and z-uniform grids with the same resolution in Ekman layers
for E = 10−3, Ro = 10−2, H = 1.

∆zfine ∆zmain = 1
15

∆zmain = ∆zfine δ (%)

1
75

0.2635 0.2630 0.19
1

150
0.2648 0.2643 0.19

δ (%) 0.49 0.49

Table 2. Radial velocity at r = 1, z = 0.1333 (the boundary of the fine-grid region of non-uniform
grid) in non-uniform and z-uniform grids with the same resolution in Ekman layers for E = 10−3,
Ro = 10−2, H = 1.

expected to have a very mild influence on the flow field outside the corner region,
and in particular on the drag force. This has been confirmed by some numerical tests
as discussed later.

The drag force was calculated by two different methods, and the agreement between
the results served as an additional check of the accuracy of the numerical solution.
The direct way is the computation of the total force acting on the disk, as caused by
the pressure difference between the upper and lower sides,

D = 2π

∫ 1

0

[p(r, 0+)− p(r, 0−)]r dr. (2.20)

Here there is no contribution from the viscous stresses to the force on the thin-
disk particle because: (a) the normal viscous stress for 0 6 r < 1, z = 0 vanishes
identically†, and (b) although the singular behaviour of the velocities, and in particular
of w, introduces shear stresses O(s−1/2) near the edge (r = 1, z = 0), the integral of
these stresses over a small circle in the (r, z)-plane of radius s = d around the edge is
O(d1/2) which indicates that the contribution to the force vanishes in the limit d→ 0.

The second method for the drag evaluation is based on the computation of the
total force acting on the walls of the container. These two forces, on the particle
and on the boundaries, are expected to be equal in absolute value since the total
acceleration of the fluid is zero (its centre of mass does not move), and hence the
total force acting on the fluid has to be zero as well. The total force acting on the
container is contributed by the pressure difference between the top and the bottom
walls and the viscous shear on the sidewall; therefore we obtain

D = 2π

∫ rmax

0

[p(r, Hu)− p(r, Hl)]r dr − 2πrmax

∫ 2H

0

∂w(r, z)

∂r

∣∣∣∣
r=rmax

dz. (2.21)

As expected, the shear term in (2.21) turns out to be negligibly small compared
with the pressure term for all the short container configurations we have considered

† The azimuthal viscous stresses on the particle may, however, generate a net torque unless the
boundary condition ωp is properly defined.
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No. of r-intervals: 30 50 60 100 110 120

∆zmain = 1
15

26527 26558 26590 26675 26686 26698

∆zmain = 1
30

26617 26655 26684 26777 26787 26801

∆zmain = 1
60

26629 26675 26706 26802 26815 26827

Extrap. in z 26633 26682 26713 26810 26824 26836

Table 3. The drag force for E = 10−3, Ro = 10−2, H = 1 as obtained with (2.21) on different grids,
at time T = 10 with ∆T = 1

1200
. ∆zfine = ∆zmain/5. The last row gives extrapolated values using

∆zmain = 1
30

and 1
60

. When (2.20) is used the last row (extrapolated values) is 26639, 26684, 26716,
26811, 26827 and 26837.

in this study. The use of the reduced pressure instead of the physical one for the
computation of the drag force requires a straightforward correction to (2.21) when z
accelerations are present. In the present study the agreement between the two different
computations of the drag force was within 1%. The good agreement between the
results obtained via the two different methods for the drag evaluation, as discussed
below, provides additional confirmation of the validity of (2.20).

We emphasize that the direct evaluation of the drag force points out the formal
difficulty associated with this variable. The analytically predicted O(s−1/2) singularity
of the pressure at the edge of the disk indicates that a large truncation error
in the result of (2.20) cannot be a priori excluded. However, such an error did
not appear in our computations. Since the pressure is calculated at the middle
of the computational cells, the integral of the pressure is essentially performed by
the rectangle (or midpoint) method, which is able to approximate straightforwardly

integrals of the form
∫ b

0
s−1/2 ds (the rate of convergence is low, only 1

2
, but nevertheless

with three points in the interval (0, b) the error is already less than 20%). Moreover,
Vedensky & Ungarish (1994) estimated analytically that the contribution of this
singularity to the drag force is relatively small, which means that a high numerical
resolution of the singularity region is not necessary for obtaining an accurate result
for the global drag force. Our estimate of the mild contribution of the singularity
to the numerical error was systematically confirmed by comparisons discussed below
between (a) numerical results on different grids, and (b) exact linear results, which
take this singularity into account, and the corresponding numerical results with
Ro = 10−4, which were obtained without taking any special measures to deal with
the singularity.

Consider the influence of the grid size (i.e. the spatial truncation errors) on the
accuracy of the drag force result. We illustrate this feature for the typical configuration
with E = 10−3, Ro = 10−2, H = 1, and the disk initially placed in the middle of the
container. The drag force obtained atT = 10 (at about 1

3
of the spin-up time interval)

with ∆T = 1
1200

, on different grids, is displayed in table 3. In this table each row
corresponds to a constant value of ∆zmain and each column corresponds to a constant
number of radial grid intervals. In each case ∆zfine = ∆zmain/5. The associated table 4
presents the deviations of the results from the value obtained with the largest number
of computational points. We mention that this grid contains about 9 × 10 intervals
in the E1/2 ×E1/2 corner region near the disk edge; the coarsest grid has about 2× 3
intervals in this region.

The results converge monotonically as the numbers of both radial and axial grid



124 E. Minkov, M. Ungarish and M. Israeli

r-intervals 30 50 60 100 110 120

∆zmain = 1
15
−1.12 −1.00 −0.88 −0.57 −0.53 −0.48

∆zmain = 1
30
−0.78 −0.64 −0.53 −0.19 −0.15 −0.10

∆zmain = 1
60
−0.74 −0.57 −0.45 −0.09 −0.04 0.00

Table 4. The percent relative deviation of D from the value D = 26827 obtained on the finest grid
of table 3.

intervals increase. The difference between the results on the coarsest grid and on the
finest grid is only about 1%. This indicates that when the minimal axial and radial
intervals are both less than about 0.5E1/2 acceptable accuracies, of about 1%, are
expected.

We inspected carefully the rate of convergence of these results. The axial dependence
indicated a second-order accuracy, as expected, and accordingly we performed one
step of Richardson extrapolation.† The outcomes are also presented in table 3. The
radial order of convergence is less evident. The second-order accuracy is lost because
of the singularity at the edge r = 1, but the observed convergence is faster than
the 1

2
order expected for the rectangle rule quadrature discussed above. We used the

empirically estimated 3
4

order of convergence for extrapolating in the radial direction
the z-extrapolated values for 100 and 120 radial intervals. The result of this double
extrapolation is D = 27013, which is 0.7% larger than the result of the ‘best’ grid and
1.8% larger than the result of the ‘worst’ grid.

We conclude these inspections and estimates of the behaviour of errors on different
grids that, in spite of our meagre treatment of the edge singularity, accuracies of about
1% are attainable in the range of parameters of interest within a moderate number
of grid intervals. This provides support for our expectation that the singularity has
a local and minor influence on the numerical results and validates the method by
which we circumvented the associated difficulties. Both ways of drag calculation, by
(2.20) and (2.21), lead to the same conclusions.

We would like to mention, without going into details, that additional numerical tests
were carried out to strengthen our confidence in our conclusion about the localized
influence of errors incurred by the discretization near the edge. These included (a)
the inspection of the velocity and pressure fields and of the different terms in the
momentum equations near the edge on various grids; and (b) computations with
intentionally perturbed values of the parameters E and Ro in the vicinity of the edge
(which emulate non-vanishing local truncation errors). All the tests indicated that the
edge perturbations decay in the E1/2 ×E1/2 corner and the residual effect, if any, was
usually in the fourth digit of the inspected variables. The comparison of the numerical
results with analytical solutions, which is discussed below, provides further support
for our confidence on this matter.

2.4. The Poisson equation for pressure

For each time step the advance from the known velocity field vn to the new field vn+1

is performed in two stages. In the first stage we consider explicitly, via the momentum
equations, the contribution of viscous, Coriolis and inertial terms to the change of

† Schematically, A = (A2 − qpA1)/(1− qp) where q is the interval ratio of grid 1 to grid 2 and p
is the asymptotical order of convergence.
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velocity during the time step, and obtain a first approximation, denoted ṽn+1, as
follows:

ũn+1 = un +
∆t

Ro

[
E

(
∂2un

∂r2
+

1

r

∂un

∂r
+
∂2un

∂z2
− un

r2

)

+2vn − Ro
(
un
∂un

∂r
− vn2

r
+ wn

∂un

∂z

)]
,

ṽn+1 = vn +
∆t

Ro

[
E

(
∂2vn

∂r2
+

1

r

∂vn

∂r
+
∂2vn

∂z2
− vn

r2

)

−2un − Ro
(
un
∂vn

∂r
+
unvn

r
+ wn

∂vn

∂z

)]
,

w̃n+1 = wn +
∆t

Ro

[
E

(
∂2wn

∂r2
+

1

r

∂wn

∂r
+
∂2wn

∂z2

)

−Ro
(
un
∂wn

∂r
+ wn

∂wn

∂z

)]
,

where the spatial derivatives are approximated with the use of (2.18) and (2.19). This
intermediary flow field is, of course, not expected to satisfy the equation of continuity.

In the next stage, we incorporate the contribution of the as yet unknown pressure
field, pn+1, and subject it to the condition that the new velocity field has to satisfy
the continuity equation (2.11). A detailed discussion of the emergence of the Poisson
pressure equation in the time-marching solution of the Navier–Stokes equations is
given by Karniadakis et al. (1991). For formulating a discrete equation for the pressure
we have to discretize (2.11). Denoting the cell centre’s coordinates by ri, zj , we refer to
velocities in the surrounding points as ui−1/2,j , ui+1/2,j and wi,j−1/2, wi,j+1/2 (see figure 2).
The discrete analogue of (2.11) on the (n+ 1)th time step is

1

ri

un+1
i+1/2,jri+1/2 − un+1

i−1/2,jri−1/2

ri+1/2 − ri−1/2

+
wn+1
i,j+1/2 − wn+1

i,j−1/2

zj+1/2 − zj−1/2

= 0. (2.22)

Taking into account that

un+1
i−1/2,j = ũn+1

i−1/2,j + ∆t
pn+1
i,j − pn+1

i−1,j

ri − ri−1

,

un+1
i+1/2,j = ũn+1

i+1/2,j + ∆t
pn+1
i+1,j − pn+1

i,j

ri+1 − ri ,

wn+1
i,j−1/2 = w̃n+1

i,j−1/2 + ∆t
pn+1
i,j−1 − pn+1

i,j

zj−1 − zj ,

wn+1
i,j+1/2 = w̃n+1

i,j+1/2 + ∆t
pn+1
i,j+1 − pn+1

i,j

zj+1 − zj ,
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we obtain after simple manipulations

2∆t

zj+1 − zj−1

[
pn+1
i,j+1

zj+1 − zj +
pn+1
i,j−1

zj − zj−1

− pn+1
i,j

(
1

zj+1 − zj +
1

zj − zj−1

)]

+
2∆t

ri+1 − ri−1

[
pn+1
i+1,jri+1/2

ri+1 − ri +
pn+1
i−1,jri−1/2

ri − ri−1

− pn+1
i,j

(
ri+1/2

ri+1 − ri +
ri−1/2

ri − ri−1

)]

=
1

ri

ũn+1
i+1/2,jri+1/2 − ũn+1

i−1/2,jri−1/2

ri+1/2 − ri−1/2

+
w̃n+1
i,j+1/2 − w̃n+1

i,j−1/2

zj+1/2 − zj−1/2

,

which is a discrete Poisson equation for pn+1. The boundary conditions are of Neu-
mann type and provided by the radial and axial momentum equations evaluated at the
boundary of the computational domain while accounting for the boundary conditions
of the velocity; the resulting values are implemented with the aid of dummy points
outside the boundary. The arbitrary constant difficulty associated with the Neumann
condition is fixed by prescribing the value of p at one grid point near the disk.

The solution of the Poisson equation for the pressure is performed by the SOR
method. The maximal absolute value of the difference between two successive itera-
tions is used as a convergence criterion, and the process is stopped when this difference
decreases below some value ε, typically about 10−7, which by inspection was fixed
small enough so that further decrease had no effect on the flow field. The weak
dependence of the pressure on the z-coordinate makes the block-SOR method with
radial-directed blocks efficient. In fact, this block-SOR method improves convergence
significantly in certain configurations (long container) but is not effective in others;
the gain in convergence speed may be lost by the additional computation needed for
one iteration. In both cases (using the regular or blocked-SOR method) we used an
over-relaxation parameter α smaller than the ‘optimal’ one. We find ‘experimentally’
that every configuration has its own optimal α which minimizes the eigenvalues which
correspond to the local changes in pressure. We do this by measuring the SOR
convergence rate after the formation of the Ekman layers when the changes in the
pressure field become local, and not at the initial time steps.

2.5. Validation of the numerical results

As previously mentioned, the controlled variation of the computational parameters
like the grid steps and time steps and the convergence criterion ε of the solution of
the pressure equation has small and continuous effects on the solution, and indicates
that the present numerical solution converges to acceptable accuracy for practical
values of the grid interval and time step.

We consider ‘acceptable accuracy’ in the present study as containing errors of up
to about 1% in the value of the drag force and angular velocity in the core and up to
about 3% in the value of the meridional stream function (with possible local excep-
tions in regions of small velocity). The reason is that the effects we wish to understand
can be safely detected and analysed within this range of accuracy. For instance, the
drag discrepancies between the geostrophic theory and the experiments of Maxworthy
(1968) were about 20% while the experimental errors were about 2%; it is actually
very unlikely that drag force measurements with a higher accuracy will be available
in the next decade. The discrepancies between the geostrophic, quasi-geostrophic and
full analytic-linear results in the range of parameters of this investigation are also
typically larger than 10%. The effects of asymmetrical position, nonlinear terms and
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time-dependence which are considered below cause quite significant variation from
the ‘basic’ flow field which can be readily recognized even if the abovementioned
errors are present.

To assess the physical validity of the numerical results it is of course desirable to
also verify the compatibility of the present computations with physically acceptable
solutions obtained by different, preferably analytical, methods; and we performed
such comparisons. The most significant candidates for comparison, for the disk-
particle configuration, are the results of Ungarish & Vedensky (1995). These results
were obtained by an analytical transform method and can be considered essentially
‘exact’ from a mathematical point of view, but they cover only the special linear case
Ro = 0, and a very particular configuration: the (quasi) steady flow with the disk in a
strictly symmetric position between the plates, and, moreover, in a radially unbounded
fluid (rmax → ∞). These conditions, obviously, cannot be exactly reproduced with the
numerical code. We used instead Ro = 10−4 and 26 rmax6 5 (depending on the values
of E and H). Some of these comparisons are presented in this paper, and other will
be described in a sequel paper on the long container configuration (Part 2). Almost
all comparisons concern small Ekman number (large Taylor number) cases, which
are expected to represent the more difficult parametric range from the computational
point of view. In the long container case comparisons were also performed at E = 1. In
all the tested cases excellent agreement was obtained. Unfortunately, no independent
solutions for the nonlinear (finite values of Ro) cases are available for a reliable
quantitative comparison.

In most of the computations the time step was chosen due to stability requirements,
but in any case we have assessed the resulting accuracy by repeating computations
with different time steps. Similar checks were performed for the chosen grid param-
eters: the number of vertical and horizontal grid intervals, the number of refined
vertical intervals, rmax, etc. The typical grid size is about 150 radial intervals and 100–
400 vertical intervals. The number of time steps may vary from 10 000 to 300 000. The
computations were carried out in double-precision on a DEC/AXE alpha 8800-5/300
(of which only one CPU was used) computer. The total CPU time for one run varied
from about one hour for a short container configuration to about 50 hours for a
long container configuration. More than 80% of the CPU time was dedicated to the
solution of the Poisson equation for the pressure in the long container configuration;
for the short container this task took more than 90% of the CPU time.

3. The developed flow (‘steady state’)
Here we discuss the flow field obtained several spin-up time intervals after start

from rest, t > 2HRoE−1/2 (the time-dependent motion will be discussed later). If not
stated otherwise, the particle is in the middle of the container (approximately, with a
possible dimensionless deviation O(Ro) due to the motion).

3.1. Linear flow limit

For Ro = 0 the equations of motion (2.8)–(2.11) become linear and time-independent.
The analytical solution of these equations has been obtained by Ungarish & Vedensky
(1995) and is the most obvious item for comparison with the present solution at a
small value of Ro. We start with the pattern of the stream function for E = 1

6400
and different values of H , and present side by side contour lines from Ungarish &
Vedensky (1995, figure 5) and the present ones obtained for Ro = 10−4.

Only the upper region is shown and discussed because of symmetry with respect to
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Figure 4. The contour lines of the stream function for E = 1
6400

, H = 1. Analytical (a) and numerical

(b) results. The computation was performed on a 60×170 grid with 15000 time steps and Ro = 10−4.

z = 0. The flow field displays the classical structure and behaviour: the plate above
the rising disk pushes fluid into the upper Ekman layers, where it moves outward,
and likewise the disk pushes fluid into the lower Ekman layer where it also moves
outward. In the core there is no radial motion of the fluid. Close to r = 1 the E1/4

shear layer assists the Ekman layers in the radial transport of the fluid, which is next
transported by the E1/3 layer to and around the edge of the disk to the lower region.
The E1/3 layer extends well into the r > 1 domain, where a recirculation appears.
Note that according to our definition the value of ψ is zero on the axis and on the
disk, while on the solid walls ψ = 0.5r2.

Figure 4 shows the H = 1 configuration. The numerical and analytical results are
in very good agreement. There is a difference in the Ekman layer domains which can
be attributed to the low resolution of the plotting method used for the analytical
solution. For a good representation of the Ekman layer several points are needed
in the axial interval E1/2 = 1

80
. The distance between the sample points in the figure

for the numerical stream function is 1
200

and therefore a good graphical presentation
is possible, and indeed the shape of the Ekman layers in the numerical plot is
the classical one and includes a region with negative radial velocity. On the other
hand, in the graph of the analytical stream function the interval between the sample
points is about 1

30
, and details are obscured; however, this is only a drawback of the

representation, not of the analytical result itself.
The flow-field details outside the Ekman layers agree very well. Note that the

recirculation in the inner Stewartson layer is a delicate feature because of its con-
nection with the disk edge and its sandwiched position between the E1/4 layers. In
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both solutions the recirculation occurs between the stream lines with values 0.702
and 0.704. The length and the thickness of the recirculation region, and the value of
the maximal stream line (0.77) are also very close for the compared graphs.

For longer cylinders, as H was increased to 2 and 4 (see Minkov 1998) the same
agreement between the analytical and numerical results was observed. The sandwich
region of the Stewartson layers becomes thicker asH increases, and the lower bound of
the stream function in the recirculation region also increases. These changes show up
in the same qualitative and quantitative manner in both the analytical and numerical
results. The small discrepancies between the analytical and numerical results in the
tested configurations can be attributed to the resolution of the plot and truncation
errors (in both the numerical and ‘analytical’ values of ψ).†

Of major interest is the drag force agreement between the analytical and numerical
solutions. The comparison involves several approaches: (a) the geostrophic drag, D0,
obtained by assuming that the flow is composed of inviscid cores and Ekman layers
(no contribution from the vertical Stewartson layers), following Moore & Saffman
(1968), is used for scaling; (b) the quasi-geostrophic drag (Dq−g) derived by Ungarish
(1996) by incorporating the effects of Ekman and outer Stewartson layers (but no
contribution from the vertical E1/3 Stewartson layer); (c) analytical-linear drag, Da−l,
computed by Ungarish & Vedensky via a solution of the full linear equations; and
(d) numerical results (Dnum).

The results of the geostrophic approximations are simply

ωu = −ωl =

{ − 1
2
E−1/2 (0 < r < 1)

0 (r> 1),
(3.23)

D0 =
π

2
E−3/2, (3.24)

and results of the quasi-geostrophic approximations (in the symmetrical case) are

ωu = −ωl =

 − 1
2
E−1/2

[
1− I1(r/ε)

rI1(1/ε)

]
(0 < r6 1)

0 (r> 1),
(3.25)

D =
π

2
E−3/2

[
1− 4ε

I2(1/ε)

I1(1/ε)

]
, (3.26)

where Ij are the modified Bessel functions and ε = (H/2)1/2E1/4 is the length scale of
the E1/4 vertical shear layer. The values of ωu and ωl are for the upper and lower
cores outside the Ekman layers. In both geostrophic and quasi-geostrophic models
there is a strong connection between the angular velocity and the drag: both use
the geostrophic radial momentum equation 2ωr = E∂p/∂r for obtaining p and then
employ (2.20).

The full analytical-linear results cannot be expressed in simple closed form formulae.
We observe briefly that the geostrophic results which discard the presence of the

vertical Stewartson layers, both of E1/4 and of E1/3 type, contain discontinuities of
ω at r = 1. The quasi-geostrophic results smooth out the discontinuity of ω in the
E1/4 Stewartson layers; indeed, for small ε the relative difference between (3.25) and
(3.23) is exp [−(1 − r)/ε]for r < 1. In general, when Hu 6= Hl , there is also an E1/4

† We keep in mind that the contour lines were calculated and plotted by commercial software
which uses various two-dimensional interpolation and smoothing methods for processing the tables
of values and coordinates.
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E H Dq−g/D0 Da−l/D0 Dnum/D0

10−3 1 0.59 0.91 0.90
5 0.30 0.62 0.62
8 0.22 0.53 0.52

10−4 0.5 0.81 0.94 0.93
1 0.75 0.90 0.88
5 0.51 0.69 0.68
8 0.43 0.61 0.60

Table 5. Drag force computed by quasi-geostrophic model, analytic-linear model and numerically
for Ro = 10−4 scaled by the geostrophic value.

Stewartson layer for r > 1. In the E1/4 Stewartson layers ω (as well as u and p) is
z-independent.† The quasi-geostrophic results do not satisfy in detail the continuity
of ∂ω/∂r at r = 1. These (and other flow-field adjustments) occur in a shear layer
of thickness (HE)1/3 (the E1/3 Stewartson layer) which is ‘sandwiched’ between E1/4

layers. The adjustment of the shear induces the recirculation discussed above. Both
the geostrophic and the quasi-geostrophic approximations require a small value of
E1/2, which is readily attainable in experiments. However, for accuracy of (3.24) a
small value of ε = (H/2)1/2E1/4 is needed, and for accuracy of (3.26) a small value
of (HE)1/3 is necessary. The full analytical-linear solution does not rely on boundary
layer matching methods and therefore its accuracy is formally unrestricted by the
values of these parameters (however, errors estimated as about 1% are introduced by
various truncations needed in the practical computations).

Typical drag force results are presented in table 5. The analytical values used in
table 5 are taken from table 1 of Ungarish & Vedensky and the numerical drag force
was computed for Ro = 10−4. The table shows that the numerical results are very
close to the full analytical-linear ones (the differences between them are of order
1%). The quasi-geostrophic results, although providing the correct trends when E
and H vary, are significantly below the numerical results. (The numerical drag force
is in some cases slightly below the analytical value; however, we note that the results
of table 3 indicate a slight increase of drag force when the numerical resolution is
improved. This suggest that an improved numerical resolution would yield an even
better agreement between Dnum and Da−l.)

The excellent agreement between the present numerical solution of the full Navier–
Stokes equations and the analytical solution of the linear steady-state equations has
several implications. First, it gives credence to both the analytical solution and to the
numerical approach and its accuracy. We recall that in the process of calculating the
analytical results (which are actually given as infinite series involving integrals with
Bessel functions kernels over semi-infinite domains) it was necessary to make some
simplifications to avoid cancellation errors, and, in addition various truncation errors
were introduced, which made an independent verification quite desirable. Second, it
clearly indicates that the linear theory results are a regular limit of the solutions of
the Navier–Stokes equations for small Ro. In other words, results and conclusions
derived for the non-physical case of Ro = 0 (strictly speaking, when no motion takes

† For a spherical particle the E1/4-type shear layers perform a different matching task, but the
flow field and in particular the influence on the drag force are similar to the disk geometry. For
details see Moore & Saffman (1968) and Ungarish (1996).
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place) are relevant to real cases of slow motion with small but still practical values
of the Rossby number. However, this conclusion is of less practical importance than
could be anticipated: although the linear equations are much simpler than the full
Navier–Stokes system, obtaining their solution for the rising body problem in a top
and bottom bounded domain is still a formidable task, which so far has been carried
out only for a disk particle at midplane position (Ungarish & Vedensky 1995). The
approximate solutions of the linear equations, termed the geostrophic model and the
quasi-geostrophic model, can be obtained with little computational effort, but yield
significant errors in the predicted drag.

The reason for these discrepancies has been shown to be the omission of the vertical
shear layers in the geostrophic model and the omission of the E1/3 shear layer in
the quasi-geostrophic model. The magnitude of the influence of the thin E1/3 layer
is surprising (e.g. a 15% contribution for E = 10−4, H = 1 and a 52% contribution
for E = 10−3, H = 5 case, respectively). The present numerical solution allows some
further clarification of the role played by the E1/3 layer in the determination of the
drag force, and hence in the disagreement between the quasi-geostrophic approximate
result and the correct drag force, as follows.

The quasi-geostrophic model (Ungarish 1996) predicts that the radial momentum
equation is well approximated by the z-independent Coriolis–pressure balance,

−2v = −E dp

dr
, (3.27)

everywhere except for the Ekman layers. Under this approximation we can calculate
the drag force by

D = 2π

∫ 1

0

[p(r, zu)− p(r, zl)]r dr, (3.28)

where zu is some axial position in the upper core and zl in the lower core (it has been
confirmed by the numerical results that p is z independent outside the Ekman layers;
this holds, to fair accuracy, even in the E1/3 layer.) Next, using the connection (3.27)
between the azimuthal velocity and the pressure, we obtain

D = 2π

{
−E−1

∫ 1

0

[ω(r, zu)− ω(r, zl)]r
3 dr + 1

2
[p(1, zu)− p(1, zl)]

}
. (3.29)

The pressure difference at r = 1 which appears in the last equation also can be
expressed in terms of the the angular velocities in the core. Suppose that r = rout is
some large radius, beyond the external Stewartson layer, where no fluid flow occurs.
Using (3.27) we find

p(1, zu)− p(1, zl) = −2E−1

∫ rout

1

[ω(r, zu)− ω(r, zl)]r dr. (3.30)

Note that the integration can be performed at any pair of axial positions in the upper
and lower cores (outside the Ekman layers). Equations (3.29) and (3.30) are expected
to hold for general configurations, and simplifications are possible when symmetry
with respect to the disk is present.

In the symmetric case, we can choose two symmetric planes (with respect to the
disk) zl = −zu and, using the symmetry of the flow, ω(r, zl) = −ω(r, zu) for Ro = 0
we conclude

D = −4πE−1

[∫ 1

0

ω(r, zu)r
3 dr +

∫ rout

1

ω(r, zu)r dr

]
. (3.31)
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, H = 1. Quasi-geostrophic and

numerical (±ω at z = ∓0.5, Ro = 10−4) results.

This result, although based on the approximation (3.27) for the pressure, turns out to
be very accurate when compared with the present numerical calculations of the drag
force. (The result of the approximation (3.31) depends, of course, on the choice of the
zu, but this dependence is quite weak.) For example, for the configuration E = 1

6400
,

H = 1, Ro = 10−4, depicted in figure 4, the drag force approximated by (3.31) differs
from the directly computed value by less than 1% (for all zu well outside the Ekman
layers).

On the other hand, the drag force in the quasi-geostrophic model was calculated
by

Dq−g = 4πE−1

∫ 1

0

|ωq−g(r)|r3 dr (3.32)

(Ungarish 1996, Equation (20)). There are two major contributions to the difference
in the results from (3.32) and (3.31). First, the value of ωq−g(r) in the region r = 1−
in the quasi-geostrophic model is close to zero, a consequence of an E1/3 layer of
zero thickness, and hence the contribution to the drag from this region is very small.
However, the presence of an E1/3 layer of finite thickness keeps |ω| well above 0 for
r6 1. According to the foregoing formulae for the drag the contributions of small
differences in ω(r) in the region r ≈ 1 are amplified in the final result. We illustrate
this for the case E = 1

6400
, H = 1 by comparison of the quasi-geostrophic results with

a numerical computation (Ro = 10−4). Figure 5 shows the graph of ω(r) below the
disk halfway between the disk and the lower plane in the quasi-geostrophic model
and in our computation. It is clearly seen that the profiles of ω are very close to each
other, but the major difference occurs in the region r ≈ 1 which is most significant
for the drag. The integral of |ω(r)|r3 with respect to r from 0 to 1 is smaller by about
12% for the quasi-geostrophic approximation than for the numerical results. Thus,
this difference can account for a quasi-geostrophic drag force being about 12% lower
than the correct one.

Second, the quasi-geostrophic model assumes that ω ≡ 0 for r> 1, which is again
a consequence of an E1/3 layer of zero thickness, and hence the second integral in
(3.31) is predicted to vanish. This term represents the difference between the pressure
above the disk and below it at r = 1. This pressure difference, see also (3.30), is
supported by the strong viscous shear in the E1/3 layer near the edge of the disk.
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In a real situation, the pressure in the upper region is expected to be higher than in
the lower region to provide the driving force necessary for the volume transfer from
the upper side to the lower one during the motion of the disk. Figure 6 shows, for
E = 1

6400
, H = 1, the pressure as a function of z in the region r = 1, as obtained by

direct numerical calculations at the closest grid lines (in the staggered grid p is not
computed at r = 1), and also as estimated from (3.30) with the aid of numerically
computed values of ω (this approximation cannot be applied to the Ekman viscous
regions, and hence the results close to the boundaries are not expected to be correct).

These computations show that the effect of the pressure difference at r = 1 between
the upper and lower cores, either by direct incorporation in (3.29) or by approximate
incorporation by the second integral in (3.31), contributes about 6% of the drag force
in the described configuration. We conclude that both contributions of the E1/3 layer
are to increase of the drag above the quasi-geostrophic value, which in the present
example constitutes about 18% of the correct result.

The numerical results support the explanation of Ungarish & Vedensky (1995) and
Ungarish (1996) for the discrepancy of Moore & Saffman’s (1968) and Maxworthy’s
(1968) results for the drag force. The comparison between the angular velocity
obtained from the numerical solution and quasi-geostrophic model shows that the
quasi-geostrophic approximation is qualitatively accurate, but the E1/3 layer has an
important quantitative effect on the drag force as speculated by Ungarish (1996).

3.2. Non-symmetric configurations

The full linear equations in a top and bottom bounded domain have been solved
only for the symmetrical case, Hu = Hl = H . (An extension of the exact solution
of Ungarish & Vedensky (1995) to non-symmetric cases seems possible but is not
straightforward. Davis & Stone (1998) solved the asymmetric case of a disk in a
domain with a top boundary and infinite lower region which is not relevant to the
short container configuration.) The geostrophic approximation for the drag force is
independent of the axial positions of the particle. Ungarish & Vedensky (1995) and
Ungarish (1996) by using the quasi-geostrophic model, estimated the influence of this
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Figure 7. The contour lines of the stream function for E = 1
6400

, H = 1, Hu/H = 0.5, Ro = 10−4.

parameter as follows: as the asymmetry increases, the drag increases monotonically
but by a small amount, and the particle acquires a small (compared to the value
in the core, 0.5E−1/2) angular velocity, ωp, which is positive when Hl < Hu and vice
versa. Here we present some numerical results for such configurations.

Figure 7 displays the stream function for a typical asymmetric linear case Hu/H =
0.5 with H = 1 and E = 1

6400
. The Ekman layer and core flow are as in the symmetric

case. The influence of the asymmetry is observed in the Stewartson shear layers: the
E1/4 layer in the longer region becomes slightly thicker than in the shorter region, and
the region of recirculation in the E1/3 layer becomes shorter than in the symmetric
case. As expected, the corresponding Hu/H = 1.5 case yields a mirror image of
figure 7, not shown here.

For E = 1
6400

, Ro = 10−4 the numerically computed drag increased above the
symmetric value by 0.26% when Hu/H = 0.5 and by 0.20% when Hu/H = 1.5, while
the scaled angular velocity of the disk ωp/(0.5E

−1/2) changed from zero to −0.12
and 0.10, respectively. (Theoretically the absolute values of these variations should
be equal for Hu/H = 0.5 and Hu/H = 1.5 in the linear case, but since we deal
here with relatively small quantities the discretization errors can easily explain the
inconsistencies with the expectations.)

The typical influence of the asymmetry on the angular velocity profile can be
inferred from figure 8, which displays the profiles ω(r) at constant z positions above
and below the disk in the configuration with Hu/H = 0.5. It is again evident that the
E1/4 and E1/3 Stewartson layers are thicker on the lower side (where Hl > H) than
on the upper side (where Hu < H). Due to the asymmetry, the value of |ω| increases
in the upper core (by approximately 0.5|ωp|) and decreases in the lower core (by
the same amount), but the difference |ωu − ωl |, which contributes to the drag force,
remains as in the symmetric case, cf. figure 5. This confirms the predictions of the
quasi-geostrophic model.
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3.3. Effect of nonlinear terms

The classical asymptotic studies of the problem (in particular Moore & Saffman
1968) and the exact solution of Ungarish & Vedensky (1995) were concerned only
with the linear flow (Ro = 0). Estimates by Moore & Saffman (1968) of the neglected
nonlinear terms placed restrictions on the applicability of the linear theory of the
form RoEaHb � 1, where a and b are negative constants; for a disk the restriction
is RoE−3/4H−1/2 � 1. (The parameter that reflects accurately the relative deviation
of the nonlinear results from the linear theory prediction is regarded as the ‘effective
Rossby number’, while Ro is the formal Rossby number.) However, the linear studies
were unable to indicate the magnitude and even the sign of the possible contribution
of the nonlinear terms to the drag and other properties. Some fallacies appeared
and were accepted for many years, like Maxworthy’s (1968) suggestion that the
nonlinear terms are responsible for the discrepancy between the geostrophic theory
and experimental observations at E ≈ 10−4 even for Ro = 10−3 (the measured drag
was about 20% lower). Ungarish & Vedensky (1995) claimed that this discrepancy
has to be attributed mainly to the shear effects in the Stewartson layers, whose
incorporation is indeed able to narrow the gap between the analytical linear solution
and the experimental observations, but, again, an analysis of the nonlinear effects
was not provided. Ungarish (1996) investigated the influence of small nonlinearities
on the flow field and on the drag force by incorporating approximately the leading
momentum convection terms in the quasi-geostrophic model. His results can be
summarized as follows. (a) The major perturbations caused by the inertial terms
are: a reduction of the dimensionless drag,† a negative rotation of the disk and
a contraction/expansion of the upper/lower E1/4 layer. (b) The linear theory, for
the range of parameters E and H relevant to the experiments of Maxworthy, is

† Some care is needed in the interpretation of the influence of Ro = W ∗/Ω∗a∗ on the drag force
results. Suppose we increase the velocity W ∗ of the particle while all other parameters are fixed;
this results in a similar increase of the drag scaling quantity, ∼W ∗. Hence in this case the statement
that the dimensionless drag decreases with Ro means that the physical drag increases slower than
linearly with W ∗. On the other hand, changing Ro by means of Ω∗ does not influence the drag
scaling – but affects the value of E.
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valid for small values of the parameter RoE−1/2. However, these results have not
been confirmed by any independent calculation or experiment. We use the present
numerical simulations to obtain both verification and more accurate insight into the
influence of the nonlinear terms.

We also remark that when 2RoE−1/2 is not smaller than 1 the assumption of quasi-
steadiness of the flow field cannot be fulfilled in physical circumstances, as the particle
is displaced more than H during spin-up. In theory, however, it is possible to artificially
freeze the position of the particle until spin-up is completed without affecting the
boundary conditions. We think that the results of such ‘numerical experiments’ may
provide insights into the contribution of the nonlinear terms athough they lack a
clear-cut physical meaning. The drag force during the transient is expected to be
lower than in the steady-state. This topic is discussed in the next section.

The influence of increasing Ro on the drag force and on the angular velocity of
the particle, ωp, can be inferred from figures 9 and 10. These graphs summarize
results of computation for the configurations: (a) E = 1

6400
and three different values

of H , and (b) E = 10−4, H = 1. For each configuration runs with the values of
Ro = 10−4, 10−3 − 10−2 (increment 2 × 10−3) were performed. We recall that in the
core |ω| ≈ 0.5E−1/2 and hence the magnitude of ωp has been scaled with this value.
Figure 9 displays the relative difference of the drag from the linear value, D/Dlinear−1
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as a function of RoE−1/2. (The ‘linear drag’ used for scaling was the force calculated
numerically with Ro = 10−4.) Figure 10 displays the angular velocity of the torque-free
particle, scaled with 0.5E−1/2 (the approximate value of the angular velocity of the
fluid in the core), also as a function of RoE−1/2. It is evident that when Ro increases
the drag force decreases and that the particle acquires a negative angular velocity.
Moreover, we observe that the relative magnitude of these deviations from the ‘linear’
case is well correlated with the value of the parameter RoE−1/2. This parameter can
therefore be regarded as the effective Rossby number of the configuration, in the sense
that the prominent observable deviations of the flow-field features from the linear
case results are quite sharply bounded by the value of this parameter. The alternative
candidate for the role of effective Rossby number, RoE−3/4, is about 10 times larger
for these cases and exceedingly over-restrictive. We also note that the influence of
the nonlinear effects decreases slightly when H increases. (Roughly, the behaviour is
like H−1/3. The detailed influence of H on the nonlinear effects seems to be rather
complicated, perhaps involving again the E1/3 Stewartson layer. This feature is also
consistent with the approximation of Ungarish (1996), but has not been pursued
there (see equation (49) in that paper and note that the radial derivative decays
with H−1/2).) In summary, the present results for deviation from the linear solution
correspond to: D/Dlinear ≈ 1− 0.4RoE−1/2H−1/3 and ωp/0.5E− 1

2
≈ 0.2RoE−1/2H−1/3.

One major difference between the linear and nonlinear flow concerns the fore–aft
symmetry of the flow field. The linear flow in a symmetric domain is symmetric, so
the torque-free disk will not rotate relative to the fluid when Ro = 0. The flow is
expected to lose its fore–aft symmetry in the presence of nonlinear terms and, indeed,
the non-zero angular velocity of the disk, see figure 10, is an obvious manifestation
of this asymmetry.

Although the appearance of a non-zero ωp when Ro increases is a significant feature,
the contribution of ωp to the drag force is minor. In other words, the influence of
Ro on the drag force is not via the production of ωp, but rather in parallel with it.
We have checked the significance of ωp on the drag force by comparing the drag
force on the torque-free particle (our usual configuration) with that obtained in a
computation with a hypothetical rotation-free particle obtained by enforcing ωp = 0
as a boundary condition. The results for H = 1 are shown in figure 11. It can be
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seen that the decrease of D is dominated by the increase of Ro, with little difference
between the torque-free and rotation-free condition on the particle. For example, for
Ro = 10−2 although the angular velocity of the particle is about 10% of the angular
velocity in the core, the contribution of rotation to the drag force is −2.8%, and the
overall contribution of the nonlinear effects is −26% (the non-steadiness will cause
an additional decrease). This result supports the conjecture of Ungarish (1996) that
the non-zero ωp has a secondary influence on the drag because it is expected to
contribute only via the nonlinear influence of the additional rotation induced by the
nonlinear effects, since in the linear case the drag will not be affected if rotation is
added to the particle.

The major changes in the flow field that lead to the drag force reduction when
Ro is increased can be explained, as in the linear case, by means of the angular
velocity profile. Ungarish (1996) pointed out that when Ro increases the vertical
shear layers are expected to thicken in the lower region and to contract in the upper
region; the corresponding changes in the profiles of ω produce a smaller pressure
difference between the upper and the lower sides of the particle than in the linear,
symmetric case. This prediction of the quasi-geostrophic model is also confirmed by
our computations. Figure 12(a) shows the profiles of the angular velocity in a typical
nonlinear case compared to the linear one. Although the deviations from the linear
profile are quite pronounced, the resulting effect of the inertial modification on the
drag force is quite small because there is a counterbalance of the changes in the upper
and lower profiles in the integral which relates the drag force to the angular velocity
(quasi-geostrophic nonlinear analogue of (3.29) – equation (50) of Ungarish (1996)).
Additional results on the influence of the nonlinear advection terms on the profile of
ω(r) are displayed in figure 12(b).

The influence of the nonlinear terms in a non-symmetrical configuration is similar to
that in the symmetrical one. This is illustrated in table 6 for two typical asymmetrical
positions of the disk. Again, as Ro increases the drag force decreases and ωp acquires
a retrograde component, but the difference from the linear results is small for small
values of RoE−1/2.

Finally, we briefly consider the stream lines in the configuration with E = 1
6400

,

Ro = 4 × 10−3, H = 1, see figure 13. In this configuration RoE−1/2 = 0.32 and the
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symmetry between the upper and lower regions is clearly affected by the nonlinear
effects, mainly in the Stewartson shear layers. The Ekman layers from which fluid is
effluxed (below the upper wall and below the disk) seem to thicken considerably. In
addition, a region of recirculation appears in the lower core close to the axis.

We conclude that the results of the investigation of the effect of the nonlinear
terms support the prediction of Ungarish (1996) for the range of usefulness of the
linear theory, i.e. RoE−1/2 � 1. (The more severe condition of Moore & Saffman
(1968) on the usefulness of the linear theory, RoE−3/4H−1/2 � 1, turns out to be over-
restrictive.) This conclusion actually rehabilitates the linear theory, because for really
small values of E, that can be achieved in practical devices (say, 10−4), the criterion
of Moore & Saffman yields impractical restrictions (say, Ro < 10−4), about one
order of magnitude below the more accurate evaluation. The trends of the influence
of the inertial terms on the linear flow field and drag force have been predicted
correctly by Ungarish (1996). This strengthens the advantage of the quasi-geostrophic
model over the other linear approaches: it provides good insights and the proper
trends for a variety of effects without the need to solve partial differential equations.
However, the quantitative evaluation of the drag by the quasi-geostrophic model is
not accurate. Also, here we detected an additional feature that has been omitted in the
previous analysis: the influence of the inertial terms on the drag force is H-dependent
(roughly decreases like H−1/3 in the cases tested). Consequently, an accurate analytical
treatment of the flow field beyond the domain covered by the linear theory is bound
to be very complicated, and numerical investigations seem to be the more convenient
vehicle for further progress.

4. The time-dependent development of the flow field
The previous theoretical results on the time-dependent velocity field and drag force

were asymptotic and had no independent confirmation. We recall that the exact linear
solution to the problem of a rising disk corresponds to a steady state only and it is
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Hu/H Ro RoE−1/2 ωp/(0.5E
−1/2) (D/Dlin−sym)− 1 Remarks

0.5 10−4 −0.120 0.0026
10−3 0.08 −0.116 −0.0088

2× 10−3 0.16 −0.116 −0.037
4× 10−3 0.32 −0.114 −0.101
6× 10−3 0.48 −0.151 −0.155
8× 10−3 0.64 −0.165 −0.222 (a)

10−2 0.80 −0.180 −0.283 (a)

1.5 10−4 0.104 0.0020
10−3 0.08 0.097 −0.0003

2× 10−3 0.16 0.087 −0.015
4× 10−3 0.32 0.054 −0.062 (a)
6× 10−3 0.48 0.022 −0.119 (a)

Table 6. The influence of inertial terms on the drag force and the angular velocity of a particle for
E = 1

6400
, H = 1 and two values of Hu/H . Dlin−sym is taken as the drag force computed numerically

with Ro = 10−4 in a symmetrical configuration. (a) Artificial quasi-steady state, whose attainment
requires more time than the travel time from the bottom to the given position.

not clear if and how it can be extended to the time-dependent case. Moreover, to
the best of our knowledge, no experimental investigations have addressed this issue.
The time-dependent behaviour is obviously influenced by the type of forcing applied
to the particle, and two cases seem to be of particular interest: (1) an impulsive
start from rest to the final velocity, and (2) a start from rest under the action of a
constant force (like a buoyant particle released in a vertical cylinder). The numerical
computations are able to provide information on both cases. The simulation of the
latter case requires the non-trivial assumption that a very thin disk has a finite (and
not necessarily very small) mass, but the results indicate that this has a physically
acceptable interpretation.

4.1. Impulsive start

Smith (1987) discussed the time-dependent formations of the geostrophic core and
of the Stewartson layers in a symmetric configuration. Ungarish (1997) considered
the time-dependent problem by both geostrophic and quasi-geostrophic models and
obtained explicit expressions for the drag force in these cases. In the following
discussion we focus our attention on the behaviour of the drag force, which is more
likely to be measured in the experiments than the velocity field. The detailed behaviour
of the time-dependent velocity field is beyond the scope of the present work; overall,
it appears to be consistent with the predictions of Smith (1987) and Ungarish (1997).

We recall the results of Ungarish (1997) for a disk particle in the midplane position
for the geostrophic approximation,

D(τ) =
π

2
E−3/2(1− e−2τ), (4.33)

and for the quasi-geostrophic approximation,

D(τ) =
π

2
E−3/2

{[
1− 4ε

I2(1/ε)

I1(1/ε)

]
− 8

∞∑
k=1

e−2(1+ε2z2
k )τ 1

1 + ε2z2
k

1

z2
k

}
, (4.34)

where zk are the zeros of the Bessel function J1(z), ε = (H/2)1/2E1/4 and τ = t/
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Figure 14. The behaviour of the drag force with time for an impulsive start for E = 10−4,
H = 5. D/Dsteady−state as a function of T(= t∗Ω∗) for geostrophic, quasi-geostrophic and numerical

(Ro = 10−4) results. Note that the spin-up time interval, τ = 1, corresponds to T = E−1/2H = 500.

(RoE−1/2H) = t∗Ω∗E1/2/H is the time scaled with the Ekman-layer spin-up interval.
According to these results, the presence of the E1/4 layers shortens the transient time.

Figures 14 and 15 illustrate, for two different combinations of E and H , the
time-dependent behaviour of the drag force as predicted by the geostrophic, quasi-
geostrophic and numerical (with Ro = 10−4) approaches. For a given configuration all
three solutions tend monotonically to a steady state in roughly the same time, which
is of order unity on the scaled τ for the different configurations. This confirms the
predictions that the essential mechanism in the flow-field adjustment is the Ekman-
layer spin-up transport.

An additional interesting feature is shown by these plots. We know from the previ-
ous sections that the Dsteady−state of the quasi-geostrophic and numerical calculations
are not in good agreement. On the other hand, we see that the curves of the time
dependence of the scaled value D(t)/Dsteady−state for the quasi-geostrophic model and
for the numerical computations almost coincide, while the curve for the geostrophic
approximation is significantly below for most of the spin-up stage. (This feature has
been consistently observed for other combination of parameters not shown here.)
This unexpected agreement between the quasi-geostrophic model and numerical com-
putations probably reflects the fact that the E1/3 layers are quasi-steady compared to
the E1/4 layers (see Smith 1987). We therefore speculate that this outcome remains
valid in a wide range of practical values of E (and also for non-disk geometries) and
allows a good approximation of the behaviour of D/Dsteady−state via the use of the
simple quasi-geostrophic results (in spite of the fact that the value of Dsteady−state itself
is not accurately predicted by this model).

4.2. Constant driving force

Another case of interest is that of motion from rest under the action of a constant
force. This is expected to provide a good approximation to the physical situation of a
buoyant particle which is released from rest at some position along the axis of rotation,
which is parallel with the gravity acceleration. The experiments of Maxworthy (1968)
and of Bush et al. (1995) were performed in this way, the former with rigid spherical
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Figure 15. Same as figure 14, but for E = 10−3, H = 1. Note that the spin-up time interval, τ = 1,
corresponds to T = E−1/2H = 31.6.

particles lighter than the embedding water and the latter with oil drops in water.
Unfortunately, however, almost no record of the initial stage of motion was made,
the main concern of these experiments being the (supposed attainable) quasi-steady
state.

The only theoretical study of this problem was performed, to the best of our
knowledge, by Ungarish (1997). It indicated that the axial velocity of the particle
and the drag force on it perform large and rapid oscillations (almost with the
inertial frequency 2Ω∗) about the steady-state values, and that the amplitudes of
the oscillations decay exponentially on the spin-up time scale. However, it has been
pointed out during that analysis that some inconsistency between the results and
the initial assumptions appears, in particular concerning the z-independence of the
pressure. Consequently, these results were considered of qualitative value only and in
strong need of verification. Such a verification of the essential behaviour and a more
quantitative insight are attempted here with the aid of the numerical computations.

The solution of the present problem requires some changes in the numerical code
that has been used in the previous sections: the velocity of the particle relative to the
horizontal boundaries, wp, is now a part of the problem.

For this additional variable we add to the previously used system the standard
equation of motion of the particle. The total force acting on the disk is the constant
external (say, the effective buoyancy) force minus the instantaneous drag force, D∗(t∗).
As in the previous case, we scale the velocities with the particle velocity at the steady
state, so the steady state has to be identical to the case of an impulsive start. This
means that the external force is equal to the drag force at the steady state, D∗(∞),
which can be computed from the impulsive start configuration. The mass m∗p of the
particle is considered here as a known, controllable, constant quantity. It is obviously
positive and, in physical circumstances, restricted by the volume and density of the
material, as discussed later. This adds one free parameter to Ro, E and H that govern
the flow in the quasi-steady state.

Now we have to solve the Navier–Stokes equations together with the equation of
motion for the particle which give the boundary condition for the Navier–Stokes
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equations:

m∗p
dw∗p
dt∗

= D∗(∞)− D∗(t∗), (4.35)

or in dimensionless form

mp
dwp
dT = D(∞)− D(T). (4.36)

Here, again, T = t∗Ω∗ and the dimensionless mass is scaled as

mp = m∗p
Ω∗

ν∗ρ∗a∗
. (4.37)

In this scaling, if the dimensional mass of the particle is m∗p = Aρ∗a∗3, where A is a
non-dimensional positive constant of the order of unity, its dimensionless mass will
be mp = AE−1. For example, the dimensionless mass of a spherical particle with the
same density as the fluid, ρ∗, is mp = 4

3
πE−1. On the other hand, the right-hand side

of (4.36) is O(E−3/2) and hence a strong acceleration is expected on the T time scale.
(The paper of Ungarish 1997 uses a different scaling for the mass: to convert, the
present mp should be multiplied by 2E2/(πH); this is because the solution in that
paper is performed in terms of the τ time coordinate.)

It was found (Minkov 1998) that an explicit discretization of (4.36) destabilizes the
numerical solution of the whole problem. A both stable and accurate incorporation
of (4.36) is via the implicit discretization:

wn+1
p = wnp +

∆T
mp

(
D∞ − Dn+1 + Dn

2

)
. (4.38)

This scheme takes into account both acceleration-dependent and flow-field-dependent
terms of the drag force since it is dependent on Dn+1. However we have to know wn+1

p

to compute the flow field and, in particular, the drag force at the time step n + 1
and (4.38) requires Dn+1 for computing wn+1

p , so (4.38) must be solved by iteration

as follows: the flow field at the ith iteration is based on the ith iteration for wn+1
p ,

and then, through (4.38), the (i + 1)th iteration for wn+1
p is computed. For the first

approximation for wn+1
p we can use wnp . So the iterative solution for (4.38) is as follows:

w̃n+1
0 = wnp, (4.39)

Dn+1
i = D(w̃n+1

i ), (4.40)

w̃n+1
i+1 = wnp +

∆T
mp

(
D∞ − Dn+1

i + Dn

2

)
, (4.41)

wn+1
p = lim

i→∞ w̃
n+1
i . (4.42)

This iteration can be accelerated significantly by use of the simple Aitken extrapola-
tion. We found that typically one step of extrapolation gives about six correct digits,
so (4.42) may be replaced by

wn+1
p = wn+1

2 +
(wn+1

2 − wn+1
1 )2

wn+1
2 − 2wn+1

1 + wn+1
0

. (4.43)

The discretization (4.38)–(4.41) and (4.43) was used to obtain the results presented
below. We note that this algorithm increases considerably the computational time
compared with the impulsive start problem: now the progress of one time step of the
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flow-field simulation contains three full cycles of numerical solution of the Navier–
Stokes equations. We recall that the acceleration of the origin of the system has been
implicitly included in the reduced pressure term and hence the flow-field equations
remain in the form used for the impulsive start problem.

Typical results for the drag force and axial motion as a function of time, for
E = 10−3, H = 1, Ro = 10−4 and different values of the dimensionless mass mp, are
displayed in figures 16 and 17. The spin-up time interval for this configuration is
T = 31.6. We note that for E = 10−3 the dimensionless mass of a sphere with the
density of the fluid is 4189, see (4.37).

The numerical results reproduce in a clear-cut manner the appearance of oscillations
in the axial motion which decay on the spin-up time interval. The frequency of these
oscillations increases when mp decreases, but is smaller than 2 (on the time coordinate
T) for all the cases tested. Moreover, we notice that the behaviour of the particle
velocity does not depend strongly on the mass for light particles. This can be attributed
to the virtual mass effect, i.e. the need to accelerate the fluid becomes the dominant
momentum absorber when the mass of the particle itself diminishes. This indicates
that the behaviour obtained here for a thin disk is expected to be physically relevant
to more realistically shaped particles. The pressure field, not displayed here, is indeed
z-dependent.

We emphasize that the actual, physical, magnitude of the oscillations is so small
that very special care is needed to observe them. Consider the distance travelled
by the particle between the points where the velocity changes sign from positive to
negative in figure 17. These positions, where the particle attains a clear-cut position
of instantaneous rest, seem an appropriate feature for experimental observations. For
mp = 100 the first such point occurs at a distance of about 14 from the release
positions, and the next two points follow at intervals of about 5 and 8 on the
dimensional scale Ro a∗; the next points are hard to identify. Hence for small values
of Ro (say 10−3) we are concerned with lengths of the magnitude of about 1% of the
particle radius. Bush (1993, figure 5.6) shows the measured trajectory zp as a function
of time of a drop of oil of radius of about 2 cm at Ro ≈ 0.01, E ≈ 3× 10−4, H ≈ 5
released from rest near the bottom wall in water. For these parameters the amplitude
of the oscillations (estimated from the previous disk results) is about 2 mm, below the
resolution of the reported measurements. The global measured behaviour is consistent
with the theory, but the different properties of the disk and the drop do not allow a
quantitative comparison between the present results and these experiments.

The global conclusion from the time-dependent flow cases considered here is that
the numerical computations confirm that for both impulsive start from rest with a
constant velocity and release from rest under a constant force the time-dependent
effects decay on the Ekman-layer spin-up time interval, E−1/2H/Ω∗ in dimensional
form. In the case of impulsive start the steady state is approached monotonically,
and in the case of start under constant force the steady state is attained within
rapid oscillation. A detailed experimental examination of these effects has yet to be
performed.

5. Concluding remarks
The flow generated by a slowly rising particle in a rapidly rotating fluid is a classical

problem which, after decades of analytical and experimental investigations, still poses
many fundamental open questions and doubts about the reliability of the body of
knowledge concerning the velocity field and the resulting drag force. The present
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Figure 16. (a) The particle velocity and (b) the drag force as functions of time for motion under
constant driving force with E = 1/1000, H = 1, Ro = 10−4, mp = 100, 500 and 1000.

numerical investigation, for a disk particle, seems to close some gaps of knowledge
and increase the credibility of earlier inferences. In the present paper attention was
focused on the ‘short container’ configuration for which, to the best of our knowledge,
no previous numerical solution has been published. The ‘long container’ numerical
results will be presented in a sequel (Minkov et al. 2000).

We have compared the numerical solution for a very small Ro with the disk
moving in the centre of the container in a quasi-steady state to the exact linear
solution of Ungarish & Vedensky (1995). The comparison, performed for different
sets of parameters, shows excellent agreement between the flow fields and the drag
forces of the two solutions. This comparison provides confirmation of both the
analytical-linear and numerical investigations and dismisses the suggestion of the
singularity of the linear problem (i.e. that the behaviour of the flow with a very
small Ro may differ significantly from the linear solution obtained with Ro = 0). We
also performed comparisons with some predictions of the quasi-geostrophic model
(Ungarish 1996) and explained the way in which the rather thin E1/3 shear layer
contributes significantly to the increase of the drag above the prediction of this
model.

We also presented solutions with small Ro with the disk in a non-symmetric
position.
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Figure 17. The axial displacement (divided by Ro) of the particle as a function of time T for
motion under constant driving force with E = 1

1000
, H = 1, Ro = 10−4, for mp = 100 and mp = 4189.

By increasing the value of Ro, we checked the influence of the inertial nonlinear
momentum advection terms on the flow field and the drag force. We compared
this influence with the approximate predictions by the quasi-geostrophic model. The
results support the estimates of Ungarish (1996) for the range of usefulness of the
linear theory, i.e. RoE−1/2 � 1, and his prediction about the modifications introduced
by the nonlinear terms: a (slight) decrease of the dimensionless drag force, a relatively
small retrograde rotation of the particle, and a contraction (expansion) of the vertical
shear layer in the upper (lower) side. The influence of the inertial terms on the drag
force turns out to decay slightly when H increases. The condition of Moore & Saffman
(1968) on the applicability of the linear theory, RoE−3/4H−1/2 � 1, was definitively
found to be over-restrictive in the range of parameters tested here. We suggest that
now there is a quite strong body of evidence, both analytical and numerical, which
correlates (and even bounds) the prominent deviations from the linear theory results
to the value RoE−1/2H−1/3. This finding definitively rehabilitates the importance of
the linear theory for attainable small values of E (say, as small 1

20000
) and Ro (say, of

the order of 10−3).
We presented results for the time-dependent behaviour of the drag force in the case

of an impulsive start. Surprisingly, the ratio of the time-dependent drag force to the
steady-state value as a function of time turned out to be the same for the numerically
calculated results and for the quasi-geostrophic model. The exact reason has yet to
be explained.

We presented an investigation of the time-dependent behaviour for the case of a
start from rest of the particle motion under a constant force. The results confirm
the qualitative effect of the particle oscillations indicated by Ungarish (1997). The
behaviour of these oscillations is dependent on the mass of the particle: for small
mass it is quite similar to harmonic and it becomes more complicated when the
mass increases. An experimental examination of the oscillation effect has yet to be
performed.

Strictly speaking, the present investigation of the short container configuration
for small values of the parameter E and small to moderately small values of the
parameter RoE−1/2 did not provide any revolutionary insights into the behaviour
of the flow field and drag force compared with the previous body of theoretical
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knowledge. However, we recall that a great deal of that knowledge was based on bold
approximations and deductions which had no independent confirmation. The support
provided by the present numerical results elevates the available body of information
to the status of a reliable theory.

The main deficiency of the present study is the disk shape of the particle. However,
this is not expected to alter the main conclusions. For further theoretical progress, and
encouraged by the present solutions, it would be interesting to extend the numerical
investigations in several directions. First, the change of the particle shape to a sphere
or ellipsoid would be very significant for direct comparisons with experimental results.
Second, the use of a drop of finite viscosity instead of a solid particle would generalize
the problem to multiphase systems. These numerical computations require complex
modifications of the present code, or use of different numerical codes, and are beyond
the objective of our present investigation.

Beside the incentive for additional numerical results, the conclusion that the linear
theory is a quite accurate predictive tool provides increased motivation for seeking
additional analytical solutions to the full linear equations of motion.

The present results also indicate that the quasi-geostrophic model approximation
(Ungarish 1996, 1997) is a versatile and robust tool which provided the correct
parametric trends and insights for steady-state, time dependent and slightly nonlinear
cases. This is encouraging, because this model is still the best solution available for
spherical and ellipsoidal particles and drops, even in the linear case, and the only
approximation available for small but non-zero values of Ro.

The present progress in theory suggest the need of new experiments. For many years
the experimental information surpassed and challenged the theoretical knowledge.
Now the situation has changed to the opposite. Experimental clear-cut verification
of the influence of RoE−1/2, asymmetry and time-dependent stage are expected to
strengthen our knowledge. Experimental observations on interactions between two
(and more) particles are expected to point out novel and perhaps fascinating effects.

The research was partially supported by the Fund for the Promotion of Research at
the Technion and by the Bar-Nir Bergreen Software Technology Center of Excellence.
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